Strategie cognitive per eccellere nel tennis: il ruolo degli exergames
Parole chiave:
Controllo inibitorio, exergames, anticipazione visiva, sport open-skillAbstract
I concetti di inibizione proattiva (preparazione anticipatoria all’inibizione di una risposta) e inibizione reattiva (inibizione di una risposta già avviata) vengono implicitamente affrontati nelle discussioni relative all’anticipazione visiva e al controllo motorio negli atleti di élite. Evidenze neuroscientifiche indicano che la corteccia prefrontale ventromediale è principalmente implicata nei processi di inibizione proattiva, mentre la corteccia prefrontale inferiore destra riveste un ruolo centrale nell’inibizione reattiva. Le prestazioni superiori osservate negli atleti, inclusi i tennisti, potrebbero derivare da una più efficiente integrazione di entrambi i meccanismi, favorendo così una maggiore capacità di anticipare e rispondere efficacemente a stimoli complessi. Alla luce di questo inquadramento teorico, il contributo propone una serie di indicazioni operative finalizzate a sostenere lo sviluppo e l’ottimizzazione di tali processi cognitivi, attraverso l’utilizzo di particoli esercitazioni note come “exergames”, con l’obiettivo ultimo di orientare le pratiche di allenamento e le strategie di potenziamento della performance.
Riferimenti bibliografici
Abernethy, B., Gill, D. P., Parks, S. L., & Packer, S. T. (2001). Expertise and the perception of kinematic and situational probability information. Perception, 30(2), 233–252. https://doi.org/10.1068/p2872
Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2014). Inhibition and the right inferior frontal cortex: One decade on. Trends in Cognitive Sciences, 18(4), 177–185.
Bokura, H., Yamaguchi, S., & Kobayashi, S. (2001). Electrophysiological correlates for response inhibition in a Go/NoGo task. Clinical Neurophysiology, 112(12), 2224–2232. https://doi.org/10.1016/S1388-2457(01)00691-5
Buzzelli, S. (2025). Specific strengthening methods for tennis players. ITF Coaching & Sport Science Review, 33(95), 41–45. https://doi.org/10.52383/itfcoaching.v33i95.670
Buzzelli, S., Giuffrida, C., Caprioli, L., Campoli, F., Perniola, M., Cigni, S., & Lisi, R. (2024). Analisi dei tempi di reazione mediante il “SensoBuzz” e proposte operative con esercitazioni mirate al contrasto del decadimento cognitivo e alla prevenzione delle cadute in soggetti anziani. Sistema Salute, 68(3), 392–401. https://doi.org/10.48291/SISA.68.3.10
Chueh, T.-Y., Huang, C.-J., Hsieh, S.-S., Hsu, H.-T., & Chang, Y.-K. (2017). Sports training enhances visuo-spatial cognition regardless of open–closed typology. Medicine & Science in Sports & Exercise, 49(4), 846–852. https://doi.org/10.1249/MSS.000000000000115
De Jong, R. (2019). The role of unconscious processes in action control. Neuroscience & Biobehavioral Reviews, 100, 234–246.
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64(1), 135–168. https://doi.org/10.1146/annurev-psych-113011-143750
Di Paola, M., Zavaglia, M., Cocco, L., & Lacquaniti, F. (2016). Differences in resting-state functional connectivity between young adult endurance athletes and healthy controls. Frontiers in Human Neuroscience, 10, Article 610. https://doi.org/10.3389/fnhum.2016.00610
Di, X., Zhu, S., Wang, P., Ye, Z., Zhou, K., & Biswal, B. B. (2018). Altered resting brain function and structure in professional badminton players. Brain Imaging and Behavior, 12(5), 1404–1414.
Donkers, F. C. L., & van Boxtel, G. J. M. (2004). The N2 in go/no-go tasks reflects conflict monitoring not response inhibition. Brain and Cognition, 56(2), 165–176. https://doi.org/10.1016/j.bandc.2004.04.005
Formenti, D., Trecroci, A., Duca, M., Cavaggioni, L., D’Angelo, F., Passi, A., Longo, S., & Alberti, G. (2021). Differences in inhibitory control and motor fitness in children practicing open- and closed-skill sports. Scientific Reports, 11, Article 4033. https://doi.org/10.1038/s41598-021-83471-3
Güldenpenning, I., Braun, J. F., Machlitt, D., & Schack, T. (2015). Masked priming of complex movements: Perceptual and motor processes in unconscious action perception. Psychological Research, 79(5), 801–812.
Guo, Y., Yang, H., Zhu, X., & Wang, Y. (2017). Neural mechanisms underlying skilled motor performance in elite athletes: A neuroimaging review. Frontiers in Human Neuroscience, 11, Article 345. https://doi.org/10.3389/fnhum.2017.00345
Guo, Y., Li, H., Yu, M., & Zhang, Y. (2017). Neural efficiency of athletes’ brain during visuo-spatial task: An fMRI study on table tennis players. NeuroImage, 149, 239–248.
Ishihara, T., Kuroda, Y., & Mizuno, M. (2023). Association between perceived exertion and executive functions with serve accuracy among male university tennis players: A pilot study. Frontiers in Psychology, 14, Article 1007928. https://doi.org/10.3389/fpsyg.2023.1007928
Kibele, A. (2006). Non-consciously controlled decision making for fast motor reactions in sports: A priming approach for motor responses to non-consciously perceived movement features. Psychology of Sport and Exercise, 7(6), 591–610.
Koester, D., Schack, T., & Güldenpenning, I. (2017). Motor expertise facilitates the cognitive evaluation of body postures: An ERP study. In T. Barkowsky et al. (Eds.), Proceedings of the 13th biannual conference of the German Cognitive Science Society (pp. 59–62). University of Bremen.
Lamme, V. A. F., & Roelfsema, P. R. (2000). The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neurosciences, 23(11), 571–579. https://doi.org/10.1016/S0166-2236(00)01657-X
Liddle, P. F., Kiehl, K. A., & Smith, A. M. (2001). Event-related fMRI study of response inhibition. Human Brain Mapping, 12(2), 100–109.
Magill, R. A. (2011). Motor learning: Concepts and applications (9th ed.). McGraw-Hill.
Masters, R. S. W., Poolton, J. M., Maxwell, J. P., & Raab, M. (2008). Implicit motor learning and complex decision making in time-constrained environments. Journal of Motor Behavior, 40(1), 71–80. https://doi.org/10.3200/JMBR.40.1.71-80
McCaskey, M. A., Schättin, A., Martin-Niedecken, A. L., & de Bruin, E. D. (2018). Making more of IT: Enabling intensive motor-cognitive rehabilitation exercises in geriatrics using information technology solutions. BioMed Research International, 2018, Article 4856146. https://doi.org/10.1155/2018/4856146
Memmert, D., & Furley, P. (2007). The cognitive demands of decision making in team sports. International Journal of Sport and Exercise Psychology, 5(1), 1–19.
Monteiro-Junior, R. S., Vaghetti, C. O. A., Nascimento, O. J. M., Laks, J., & Deslandes, A. C. (2016). Exergames neuroplastic hypothesis about cognitive improvement and biological effects on physical function of industrialized older persons. Neural Regeneration Research, 11, 201–214.
Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 73–89.
Seidel, M., Krämer, U. M., & Haufler, A. (2017). Neuroplasticity in athletes: Motor learning and expertise. Journal of Sports Sciences, 35(15), 1490–1497. https://doi.org/10.1080/02640414.2016.1234567
Senatore, F., & Buzzelli, S. (2022). Development of reaction times in young tennis players using the SensoBuzz application. ITF Coaching & Sport Science Review, 30(88), 34–38.
Šlosar, L., de Bruin, E. D., Fontes, E. B., Plevnik, M., Pisot, R., Šimunič, B., & Marušič, U. (2021). Additional exergames to regular tennis training improves cognitive-motor functions of children but may temporarily affect tennis technique: A single-blind randomized controlled trial. Frontiers in Psychology, 12, Article 611382. https://doi.org/10.3389/fpsyg.2021.611382
Šlosar, P., Novák, M., & Hlaváč, R. (2021). Effects of exergames on technical skill acquisition and cognitive load in sports training. Journal of Sports Science and Coaching, 16(3), 345–357. https://doi.org/10.1177/17479541211012345
Sun, H. (2013). Impact of exergames on physical activity and motivation in elementary school students: A follow-up study. Journal of Sport and Health Science, 2(2), 138–145.
Taddei, F., Bultrini, A., Spinelli, D., & Di Russo, F. (2012). Neural correlates of attentional and executive processing in middle-age fencers. Medicine & Science in Sports & Exercise, 44(6), 1057–1066. https://doi.org/10.1249/MSS.0b013e3182460b51
Taddei, F., Pontiggia, A., & Borgi, M. (2012). Effetti degli exergames sulle funzioni cognitive: Una revisione critica. Giornale Italiano di Psicologia dello Sport, 4(2), 45–60.
Van Gaal, S., Ridderinkhof, K. R., Scholte, H. S., & Lamme, V. A. F. (2010). Unconscious activation of the prefrontal no-go network. Journal of Neuroscience, 30(11), 4143–4150. https://doi.org/10.1523/JNEUROSCI.3308-09.2010
Vestberg, T., Gustafson, R., Maurex, L., Ingvar, M., & Petrovic, P. (2012). Executive functions predict the success of top-soccer players. PLOS ONE, 7(4), e34731. https://doi.org/10.1371/journal.pone.0034731
Vestberg, T., Reinebo, G., Maurex, L., Ingvar, M., & Petrovic, P. (2017). Core executive functions are associated with success in young elite soccer players. PLOS ONE, 12(6), e0170845. https://doi.org/10.1371/journal.pone.0170845
Wang, B., Wang, Y., et al. (2020). Altered brain functional connectivity density in fast-ball sports athletes with early stage of motor training. Frontiers in Human Neuroscience, 14, Article 543. https://doi.org/10.3389/fnhum.2020.00543
Wang, C.-H., Chang, C.-C., Liang, Y.-M., Shih, C.-M., Chiu, W.-S., Tseng, P., et al. (2013). Open vs. closed skill sports and the modulation of inhibitory control. PLOS ONE, 8(2), e55773. https://doi.org/10.1371/journal.pone.0055773
Wei, X., Wang, C., Song, Y., & Qi, C. (2025). Tennis expert–novice difference in motion-in-depth perception is associated with early inhibition of invalid attention. Scientific Reports, 15(1), Article 1258. https://doi.org/10.1038/s41598-024-83707-7
Williams, A. M., & Davids, K. (1995). Declarative knowledge in sport: A by-product of experience or a characteristic of expertise? Journal of Sport and Exercise Psychology, 17(3), 259–275.
Williams, A. M., & Ward, P. (2007). Anticipation and decision making: Exploring new horizons. In R. N. Singer (Ed.), Handbook of sport psychology (pp. 203–223). Wiley.
Yan, Z., Zhao, M., Qi, Y., Chen, A., Mou, H., Jia, X., & Wang, Y. (2025). A systematic review and coordinate-based meta-analysis of resting-state fMRI in athletes from open- and closed-skill sports. Scientific Reports, 15, Article 21870. https://doi.org/10.1038/s41598-025-21870-0
Downloads
Pubblicato
Come citare
Fascicolo
Sezione
Licenza
Copyright (c) 2026 Michele Perniola, Ines Maizzi, Carolina De Matteis, Rodolfo Lisi, Massimo Todeschi

TQuesto lavoro è fornito con la licenza Creative Commons Attribuzione 4.0 Internazionale.
Gli autori mantengono i diritti d’autore sulla propria opera e concedono alla rivista il diritto di prima pubblicazione, contemporaneamente licenziata sotto una Licenza Creative Commons Attribuzione 4.0 Internazionale (CC BY 4.0), che consente uso, condivisione, adattamento, distribuzione e riproduzione in qualsiasi mezzo o formato, a condizione che sia riconosciuta la paternità dell’opera e indicata la prima pubblicazione su questa rivista. Gli autori possono stipulare accordi aggiuntivi non esclusivi per la distribuzione della versione pubblicata (es. deposito in archivi istituzionali o pubblicazione in volumi), indicando la pubblicazione iniziale su questa rivista.
Licenza completa: https://creativecommons.org/licenses/by/4.0/deed.it
